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Chaos in a quantum well in tilted fields: A scaling system
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Recent experiments have shown that the resonant tunneling diode in a tilted magnetic field is
a new and promising probe of quantum chaos. We show that by using a scaling transformation a
quantum spectrum is obtained that corresponds to a single classical regime and may be reliably
analyzed in terms of periodic orbits. We show that for parameters close to experimental values
(with an injection energy of about 25% of that due to the voltage drop), with increasing tilt angle,
the disappearance of one set of fluctuations in the tunneling current is associated with a confluence
where two periodic orbits are absorbed, persisting briefly in the spectrum as a “ghost.”

PACS number(s): 05.45.+b, 73.20.Dx, 73.40.Kp

Recent experimental and theoretical studies [1-3] have
considered the resonant tunneling diode in a tilted mag-
netic field as a new example of quantum chaos. The clas-
sical dynamics of the system undergo a transition from
integrable to fully chaotic as the angle between the elec-
tric and magnetic fields is varied from 6 = 0° to § ~ 20°.
The measured tunneling current was found to be modu-
lated by oscillations that were related to unstable peri-
odic orbits in the chaotic regime [1]. This represents a
new experimentally accessible probe of the behavior of
a quantum system in the classically chaotic regime. A
particular feature of the results was an abrupt change in
the frequency of modulations at higher voltages [1].

Previous experimental and theoretical work on quan-
tum chaos in real Hamiltonians has singled out Rydberg
atoms in external fields. One reason is that atoms in
fields are amenable to scaling transformations that con-
siderably clarify the connections between the classical
dynamics and the quantum spectrum [4]. In particu-
lar, one can measure or calculate a quantum spectrum
corresponding to a single classical regime. Hence atoms
have provided a powerful test of periodic orbit theory;
recently interesting new dynamical effects such as core-
scattered modulations [5] and ghosts [6] have been found
in experimental and theoretical scaled atomic spectra.
But in atomic systems one has the freedom to scale both
the momentum and position coordinates. The quantum
well problems on the other hand are constrained by the
fixed width of the well, since it is impractical to change
its dimensions for each experimental reading.

The resonant tunneling diode (RTD) problem consists
of a single quantum well acted on by an electric field F
(related to the bias voltage V across the device) and a
magnetic field, of strength B, tilted at an angle 6 to —F
in the z-z plane. As the voltage is varied the tunneling
electrons scan the quantum energy level spectrum.

The dynamics of the electrons in the well effectively
reduces to a two-dimensional classical Hamiltonian [1,3]:
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The quantum well walls are at z = 0 and ¢ = L; m =
0.067m.. The Hamiltonian is independent of y hence p,
is a constant, though p, # muv,. Recently [3] it was
shown that in the limit where the initial kinetic energy is
negligible, E <« V, the classical dynamics depends only
on a single parameter 3 o« B/V1/2. A similar property
was found for a high energy limit E > V. However, this
approximation does not hold in the case where E is of the
same order of magnitude as V', a regime covering much
of the experimental range.

Here we show that by a simple rescaling of time one ob-
tains an exact scaling, for a given well and tilt angle, with
no restrictions on the regime of validity. Further it is then
possible to calculate and experimentally measure a quan-
tum spectrum corresponding to a single classical regime.
We then show that very detailed information concerning
the classical motion is readily extracted directly from the
quantum spectrum. We employ the substitution £ = tB.
In effect, p = p/B and 7 = r. Then, classically, we have
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The dynamics now depends only on two parameters
(other than tilt angle): a scaled energy and a scaled field
£ and ¢, rather than on three separate parameters E, F',
and B. Crucially though, we can solve for the eigenvalues
of a “rearranged” Schrodinger equation for fixed £ and
€
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(m* = 0.067; below we use atomic units throughout) to
obtain a set of eigenvalues B; 2 for a set of magnetic field
strengths (and the equivalent set of quantum energies
E; = £B?) corresponding to a fixed scaled energy and a
fixed scaled field.

Provided the magnetic field is tunable, experiments
with fixed-scaled energy and fields should then be possi-
ble . The approximate scaling proposed recently [3] also
implies that the transition to chaos occurs along curves
of constant ¢ = F/B?. Our proposed scaling makes clear
that this holds exactly throughout, regardless of the val-
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ues of field and energy. However, the classical dynamics
depends in general also on scaled energy £ . In the ex-
periments tuning the voltage also changes the energy of
the tunneling electrons injected from the outer well. Pro-
vided the ratio of injection energy to voltage is approx-
imately constant, then € constant automatically ensures
that £ is also constant. Then experiments at constant
classical dynamics are possible for regimes of field and
energy within the well. We now consider the theoretical
calculations.

In periodic orbit theory [7], the quantum energy level
density may be obtained (in addition to a constant term)
from a sum of oscillatory contributions from each prim-
itive periodic orbit and its multiple traversals. The fre-
quency of these oscillations is determined by the action
of the respective classical orbits and their amplitude is
determined by the stability of the classical orbit. In the
chaotic limit the number of periodic orbits proliferates
exponentially with increasing action; hence the quan-
tization of a chaotic system represents an infinite sum
over periodic orbits. In the regular regime on the other
hand [i.e., of Einstein-Brillouin-Keller (EBK) quantiza-
tion] discrete quantum states may be assigned to a torus
associated with one particular periodic orbit; in that case
the infinite sum over multiple traversals of each periodic
orbit results in a set of discrete harmonic-oscillator-like
levels.

For the unscaled RTD problem the classical actions
of particular trajectories and hence the frequency of the
corresponding oscillation that modulates the spectrum
depend on three parameters S = S(E, F, B) for a given
tilt angle . The same applies to the stability matrix, and
hence the amplitudes, of the modulations. This leads to
low resolution of spectral modulations and amplitudes,
which vary with spectral range. In the scaled case all
eigenvalues are obtained from the same (scaled) energy
and field, £ and e. The action S = [ pdg; in scaled co-
ordinates S = B [ pdg = BS(£,¢), but S(£,¢) is a con-
stant, so a Fourier transform of the spectrum obtained
from (3) with respect to B reveals, in the semiclassical
regime, modulations of constant frequency and ampli-
tude. The quantization condition f pdq = n in scaled co-
ordinates becomes fﬁdtj = nB™!; i.e., the nth quantum
state is now associated with a different effective value of
Planck’s constant s = B 1.

We have applied the scaling technique to the exper-
imental energy-field regime. A calculation of the ac-
tual magnitude of the Gutzwiller-type fluctuations of the
tunneling current—rather than just their frequency— in-
volves a Fourier transform of the energy-level spectrum
weighted by the tunneling probability. This has not yet
been done, though quantum tunneling probabilities for
individual quantum states in the unscaled case have re-
cently been calculated and a high tunneling probability
was found for states visibly scarred by certain periodic
orbits [2] . There it was argued that this might imply
that the tunneling may be due to scarring rather than
level clustering predicted by the Gutzwiller formula. It
is not clear that one may distinguish between these ef-
fects, since the contribution of a single orbit to both scar
strength as well as the energy-level density has the same
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distribution as well as the same periodicity. The kth
traversal of a periodic orbit contributes to the trace for-
mula with an amplitude related to its Liapunov exponent,
A; e.g., 1/sinh kA for a hyperbolic fixed point. The sum
over all higher traversals in the Gutzwiller formula re-
sults in an oscillation with a Lorentzian profile of width
determined by the Liapunov exponent. Where the orbit
is not too unstable (i.e., the Liapunov exponent is not
too large) this might be quite narrow. For a low den-
sity of states—and in [2] states where quantum numbers
about 20-25 were considered—one would expect the scar
strength to be concentrated mainly in a single state, since
the Lorentzian encompasses few states. In the semiclassi-
cal limit where the discrete nature of the spectrum is less
apparent, a proper definition of the scar strength, which
detects weak scarring, will give a similar distribution to
that predicted by the trace formula, as has been found
in other time-independent systems with two degrees of
freedom.

As yet no quantitative semiclassical theory for the tun-
neling current, analogous to closed-orbit theory, which
has been so successful for atomic photoabsorption spec-
tra [8], is available. This theory would provide the am-
plitudes for tunneling from each periodic orbit in terms
of the stability parameters (the prefactors 1/sinh kX are
valid only for the density of states) and hence allow de-
tailed comparison between the classical dynamics and ex-
periment. As in the atomic case, while all periodic orbits
contribute to the energy-level spectrum, only a subset of
the orbits is experimentally observable by means of tun-
neling. In the RTD case these are the orbits that cross
the full length of the well from the left-hand (emitter)
wall to the right-hand (collector) wall and there are fur-
ther constraints from the initial energies and momenta
of the tunneling electrons. But all the interesting dy-
namics is obtainable from the energy-level spectra, so for
the moment we restrict ourselves to an analysis of the
eigenvalues.

The experiments were carried out in a constant mag-
netic field of 11.4 T. A bias voltage of 0.4 V corresponds
to an electric field FF = 2.1 x 10° Vm~!. In atomic
units this corresponds to scaled field € ~ 1.75 x 103. Al-
though €, £ are not constant in the experiment, their
ratio is approximately constant. We have estimated a
value £ = 600¢, in other words an injection energy equal
to 26% of the voltage drop.

Figures 1(a)-1(f) show a set of classical Poincaré
surfaces-of-section (SOS) taken at the collector wall,
z =L = 1200 A, at ¢ = 1.75 x 103, £ = 600¢, for a
set of six tilt angles # = 0°-20° showing the transition
from integrability to full chaos. The position coordinate
has been transformed so that the classically allowed re-
gion is bounded by a circle of radius /2m*(E + €L) cen-
tered at the origin. All periodic orbits encounter the
xz = L wall, but only a small proportion encounter the
z = 0 wall, since few orbits have a kinetic energy compo-
nent sufficient to overcome the force due to the electric
field. Hence, the SOS for z = L has considerably more
structure (such as more islands of stability) than a cor-
responding SOS at ¢ = 0.

Figures 2(a) and 2(b) show corresponding Fourier
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FIG. 1. Set of Poincaré surfaces of section at £ = L for a
range of 0 between 6 = 0° and # = 20° with ¢ = 1.75 x 10°
and £ = 600¢. The position coordinate has been transformed
so that the classically allowed region is bounded by a circle of

radius 1/2m*(E + €L).

transformed spectra using two sets of quantum energy
levels, obtained by the solution of Eq. (3). The trans-
forms are carried out with respect to the field-free prin-
cipal quantum numbers n rather than B, since n = aB,
where a = LvV2mé& /m is a constant, and span n = 48-8
for tilt angles § = 0° and 20°. We note that other authors
sometimes refer the energy to the midpoint of the trian-
gular well. To obtain the corresponding values of n, all
our values of n given below would need be multiplied by a
factor of 1.7 and the actions should be divided by a sim-
ilar factor. The system is integrable for § = 0° but fully
chaotic for # = 20°. Peaks of varying amplitude appear

n(a)GO i

N 1! l | MJMJ.ullhuMMLLL'JMLLLMM (Jlxj

02{ (b) 6=20"
" i

0.1 ‘ I ! L ‘ '
0.0 i . 1 L J\ i Jml.s_i)mv( it Jw/ ll_w LJ‘JM M Jﬁ\x’imwdhuuiﬂ\&“ \\MA \Ml.m&

0.0 15.0

[Fourier Transforml

Scaled Action

FIG. 2. Fourier transforms (squared) of the energy-level
spectrum at € = 1.75 x 10® and £ = 600¢ for (a) § = 0° and
(b) 8 = 20°. The y axis indicates amplitudes and the z axis
indicates the scaled action S in atomic units and normalized
by a constant.

53 CHAOS IN A QUANTUM WELL IN TILTED FIELDS: A ... 3371

at positions on the horizontal axis corresponding to the
classical scaled actions S(&, €) of the periodic orbits (the
values on the horizontal axis actually correspond to S/a).
The differences between Figs. 2(a) and 2(b) are very ap-
parent for higher S, consistent with the lower amplitude
or stability and the exponential proliferation of periodic
orbits associated with chaotic dynamics at 8 = 20°.

In the recent experiments, only the range equivalent
to S < 3.5 was resolvable . With the scaling the rela-
tive contributions of the most important periodic orbits
are clearly identifiable. In Fig. 3 the major periodic or-
bits in this range are identified for 8 = 0°, 10°, and 20°.
The computational cost of the calculation rises rapidly
with 8, so for 6 = 20° only 2500 quantum levels in the
range n ~ 51-10 were used, while Figs 3(a) and 3(b)
employed 4000 levels in the range n ~ 68-10; hence the
lower resolution in Fig. 3(c). Orbits can be assigned with
confidence, since in most cases (excepting a few unre-
solved orbits) the position of the quantum peaks agrees
with the classical scaled action to well within 0.5%. The
corresponding shapes of the orbits are shown in the z-z
plane in Fig. 4. The only orbits in Fig. 3 that can con-
tribute to the tunneling are those of type t or of type
S. The orbits of type R bounce only on the right-hand
(collector) wall.

For § = 0° one can identify, in Fig. 3(a), eight major
orbits or families of orbits that modulate the quantum
spectrum. In particular, the set Ry, Rz, R3 are periodic
orbits confined to the right-hand wall, which at § = 0°
have periods in the exact ratio 1:2:3 (the scaled actions,
though, follow these ratios only roughly). At 8 =
there is reflection symmetry about z = 0 so all orbits
have symmetrical pairs (e.g., R and R; ). In fact, at
@ = 0°, periodic orbits other than to are not isolated,
forming part of a family (a resonant torus; i.e., a torus
with rational winding numbers so that the two frequen-
cies of the motion have a rational ratio), which traces out
a continuous curve in the SOS. They reduce to an iso-
lated pair for § > 0° and the pair becomes progressively
less symmetrical with increasing §. Many orbits are sub-
sequently born from bifurcations of such “parent” orbits
(or their harmonics; 2Ry, for example, indicates the sec-
ond traversal of Ry).

There are two traversing orbits for § = 0° with resolv-
able periods: to and t;, with scaled periods in the ratio
1:1.6. The periodic orbit to is a straight line at § = 0°
but winds about the magnetic field at higher 6. It rep-
resents the stable center of the SOS at 8 = 0° then loses
and regains stability with increasing 6; e.g., it is seen as
the elliptic fixed point of the central island of stability
at @ = 18° but is unstable at # = 10° in Fig. 1. The
orbit t, is another traversing orbit closely associated in
action and is born simultaneously with R;. The t3 or-
bits are also traversing orbits, with strong modulating
amplitudes, but have double the period of ¢; .

As 0 is increased the basic orbits are distorted in shape
as they wind about the new magnetic field direction. For
example, the shape of R3 at 20° is shown in Fig. 4 to
have tilted with the magnetic field.

A striking feature of the published experiments [1] is
an abrupt doubling of the period of the fluctuations in
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FIG. 3. Fourier transforms of the energy-level spectrum at € = 1.75 x 10® and £ = 600¢ for (a) 8 = 0°, (b) 8 = 10°, and (c)
6 = 20°. Contributions from the most important periodic orbits have been identified. The same units as in Fig. 2 are used.
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FIG. 4. Shapes of classical periodic orbits at (a) 8§ = 0°,
(b) & = 10°, and (c) @ = 20°. The broken lines indicate
turning surfaces. The z axis spans the quantum well width
from z = 0 to z = L = 1200 A. The vertical axis represents z
in the same units.

the tunneling current with increasing voltage (for § = 20°
this occurred for V' ~ 0.4 V). This has been shown to be
consistent with a change-over in the dominant tunneling
orbits from t-type orbits to new, longer period “S” or-
bits [1] that bounce twice on the collector wall and once
on the emitter wall before closing.

We now use the method to consider how the variation
of the classical dynamics with # manifests itself in the
spectra. In Figs. 3(a) and 3(b) we see that at § = 0°
and 6 = 10° the quantum peaks associated with ¢ty and
t, are distinct, though close in action. But on the SOS
the fixed points corresponding to to and ¢, gradually ap-
proach each other as 0 is increased. At 8 = 18°, ¢ corre-
sponds to an elliptic fixed point, marked on the SOS, at
the center of the last stable island, and ¢, to a hyperbolic
fixed point close by. Here these orbits both exist in a re-
gion of phase space accessible to the tunneling electrons,
so they might be expected to contribute to the observed
current. As the island shrinks, the two fixed points ap-
proach and eventually coalesce, annihilating each other
at 6 just below 20° in a confluence, the inverse of a saddle-
node bifurcation and where two fixed points vanish. At
nearby values of € the same process occurs at a slightly
different angle.

The quantum spectrum for 8 = 20°, Fig. 3(c), shows
that the peaks have coalesced into a single peak at
S = 1.81. This is a “ghost,” since it appears above the
saddle-node bifurcation, in other words, where the clas-
sical orbits no longer exist . The height of this peak is
sensitive to the spectral range employed. Near a bifurca-
tion and for low n the standard semiclassical amplitude
must be replaced by a new amplitude obtained using a
normal form for the generating function [6]. The ampli-
tude of the “ghost” falls off rapidly with distance from
the bifurcation (i.e., increasing 0) and our calculations
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show that for 8§ > 25° the ghost’s amplitude is negligible.

It is worth stressing that the confluence occurs for the
injection energies we considered here—of about one quar-
ter of the voltage drop across the well. For lower injection
energies the ¢y orbit’s fixed point moves to the edge of the
SOS and the orbit no longer has sufficient kinetic energy
to reach the left-hand side. This is a different dynamical
situation from the disappearance of the fixed point within
the SOS: here nearby trajectories can still bounce alter-
nately between walls, but fail to close to form periodic
orbits. When the tunneling due to the ¢ orbits is small ,
the tunneling becomes dominated by a set of four orbits
S1, S2, S3, S4 in which the electrons bounce twice on the
collector wall before returning to the emitter wall. They
all have significant amplitude in Fig. 3(c) but in particu-
lar S; and S, form a peak of large amplitude at an action
~ 3.37. They have periods about twice those of the ¢ or-
bits at 8 = 20°. These two orbits are born together just
below 6 = 13° and their actions remain close (they are
unrelated to the ¢ orbits). In the (unscaled) experiments,
the oscillations due to these orbits are only resolvable at
voltages greater than 0.4 V. Figure 3(c) corresponds to a
regime where the periods of S; and S5, respectively, both
have periods within the experimental resolution limit of
0.63 ps [1].

In conclusion, we have shown that by using a rescaled
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time we may generate a quantum spectrum correspond-
ing to a single classical phase-space regime, although we
have restricted ourselves to the case where the effective
mass is constant. Any voltage dependence of the effec-
tive mass in the experiment, e.g., m = mof(V), may
easily be incorporated, though since the classical dynam-
ics are constant if me and mé& is constant. Hence in the
experiment one might need to deviate significantly from
a parabolic relationship between voltage and magnetic
field in order to keep f(V)e and f(V)E constant.

It is then relatively easy to relate the modulations of
the quantum spectrum to the actions and stabilities of
classical periodic orbits in the chaotic regime. Dynamical
effects like ghosts are then exposed. A similar advantage
would be gained in studies of effects like level statistics
and scars.

Note added: New experiments [9] have demonstrated
the importance of bifurcations in this system, showing
that ¢o loses and regains stability with increasing field.
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